Journal of Research & Opinion peer-reviewed open access journal

Positive Controls In The Detection of Genes of Resistance to Tetracyclines In Bacteria of Veterinary Interest

Obreque B. Jara
Preventive Medicine Department, Faculty of Veterinary and Animal Sciences, University of Chile
Share:

How to Cite

1.
Positive Controls In The Detection of Genes of Resistance to Tetracyclines In Bacteria of Veterinary Interest. Journal of Research and Opinion [Internet]. 2019 Apr. 30 [cited 2024 Nov. 21];6(4):2303-10. Available from: https://researchopinion.in/index.php/jro/article/view/7
  • Articles
  • Submited: October 30, 2019
  • Published: April 30, 2019

Abstract

Because the etiologic agents are mainly multi-resistant bacteria, the treatment of nosocomial infections is increasingly complicated. In addition, because bacterial resistance is encoded by genes, it becomes necessary to know and update their frequencies and to guide the control of antimicrobial resistance in hospitals. Currently, the Polymerase Chain Reaction (PCR) is the molecular tool used for the detection of these genes, but positive controls are needed for the proper interpretation of their results. Therefore, the objective of this study was to obtain two positive controls for tetracycline resistance genes: tet (A) and tet (B) from Pseudomonas aeruginosa and Pantoea agglomerans, two bacterial strains resistant to tetracycline. These genes were detected by PCR, sequenced and compared with data from Gen Bank. ®. The results obtained using the Clustal Ω and BLAST program indicated a nucleotidic identity percentage (NIP) higher than 90% for tet (B) gene, meanwhile lower nucleotidic identity for tet (A) gene is controversial. Thus, the presence of the tet (B) gene was confirmed in the studied strains and its utilization as positive controls can be suggested. The obtaining of strain that may be used as positive control for tet(A) gene was not achieved, however new primers are proposed.

References

Allcock S, Young EH, Holmes M, Gurdasani, D., Dougan, G., Sandhu, MS., Solomon, L., Török, ML. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genom. doi:10.1017/gheg.2017.4
Almasaudi SB. (2016). Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J Biol Sci. 25(3):586-596
Boehme, A. K., Kumar, A. D., Dorsey, A. M., Siegler, J. E., Aswani, M. S., Lyerly, M. J., Monlezun, D. J., George, A. J., Albright, K. C., Beasley, T. M., Martin-Schild, S. (2013). Infections present on admission compared with hospital-acquired infections in acute ischemic stroke patients. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association, 22(8), e582-9.
Cabrera, C.; Gómez, F.; Zúñiga, A. (2007). La resistencia de bacterias a antibióticos, antisépticos y desinfectantes una manifestación de los mecanismos de supervivencia y adaptación. Colomb Med 38: 149- 158.
Chopra, I.; Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65: 232-260. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Kaczmarski EB, Fox AJ(2000). Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol38(5):1747-52.
Davies, J. (1994). Inactivation of antibiotics and dissemination of resistance genes. Science 264: 375-382.
Davies, J.; Weeb, V. (2004). Antibiotic resistance of bacteria. In: Shaechter, M. The desk encyclopedia of microbiology. Elsevier. California, USA. pp. 25-46.
Errecalde, J. (2004). Uso de antimicrobianos en animales de consumo: incidencia del desarrollo de resistencias en salud pública. FAO. Roma, Italia. 61 p. Falagas M.E., Vardakas K.Z., Kapaskelis A., Triarides N.A., Roussos N.S. (2015) Tetracyclines for multidrug-resistant Acinetobacter baumannii infections. Int. J. Antimicrob. Agents. Fair RJ, Tor Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 6:25-64. doi:10.4137/PMC.S14459
Fluit, A.; Visser, M.; Schmitz, FJ. (2001). Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14: 836-871.
Guillaume, G.; Verbrugge, D.; Chasseur-Libotte, M.; Moens, W.; Collard, J. (2000). PCR typing of tetracycline resistance determinants (Tet A-E) in Salmonella enterica serotype Hadar and in the microbial community of activated sludges from hospital and urban wastewater treatment facilities in Belgium. FEMS Microbiol Ecol 32: 77-85. Grossman, TH. (2016). Tetracycline Antibiotics and Resistance. Cold Spring Harb Perspect Med. 6(4) doi:10.1101/cshperspect.a025387
Jara, MA.; Navarro, C.; Avendaño, P. (2009). Identificación y estudio de susceptibilidad antimicrobiana de bacterias potencialmente responsables de infecciones nosocomiales en hospitales veterinarios de la Universidad de Chile. Av Cs Vet 24: 11-17.
Levy, S.; McMurry, L.; Barbosa, T.; Burdett, V.; Courvalin, P.; Hillen, W.; Roberts, M.; Rood, J.; Taylor, D. (1999). Nomenclature for new tetracycline resistance determinants. Antimicrob Agents Chemother. 43:1523- 1524.
Martí, S.; Fernández-Cuenca, F.; Pascual, A.; Ribera, A.; Rodríguez-Baño, J.; Bou, G.; Cisneros, J.; Pachón, J.; Martínez-Martínez, L.; Vila, J. (2006). Prevalencia de los genes tetA y tetB como mecanismo de resistencia a tetraciclina y minociclina en aislamientos clínicos de Acinetobacter baumannii. Enferm Infecc Microbiol Clin 24:77-80. Martínez, JL., Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Ups J Med Sci. 119(2):68-77.
Mullis, K.; Faloona, F. (1987). Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155:335-350.
Ogeer-Gyles, J.; Mathews, K.; Boerlin, P. (2006). Nosocomial infections and antimicrobial resistance in critical care medicine. J Vet Emerg Crit Care 16:1-18.
Olaechea, P.; Insausti, J.; Blanco, A.; Luque, P. (2010). Epidemiología e impacto de las infecciones nosocomiales. Med Intensiva 34:256-267.
WHO (world Health Organization). 2003. Epidemiología de las infecciones. on line[ 08-11-2018]. Available in: https://www.who.int/csr/resources/ publications/ES_WHO_CDS_CSR_EPH_2002_12.pdf
Oteo, J.; Campos, J. (2003). Valor de los sistemas de vigilancia de resistencia a antibióticos. Enferm Infecc Clin 21: 123-125.
Oyarce, D. (2011). Detección de cuatro genes de resistencia a tetraciclinas en bacterias nosocomiales Gram-negativas, aisladas en recintos hospitalarios veterinarios. Memoria Título Médico Veterinario. Santiago, Chile. U. Chile, Fac. Ciencias Veterinarias y Pecuarias. 21 p. Prestinaci F, Pezzotti P, Pantosti A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health.;109 (7):309-18.
Roberts, M. (2010). Tet mechanisms of resistance. [on line 08-11-2018] Available in < http://faculty.washington.edu/marilynr/tetweb1.pdf > []
Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.; Horn, G.; Mullis, K.; Erlich, H. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491. Sandegren L. (2014). Selection of antibiotic resistance at very low antibiotic concentrations. Ups J Med Sci.119 (2):103-7.
Sanz, L.; Junco, C. (2009). Identificación de la etiología de las infecciones bacterianas de las heridas operatorias. Hosp Vet 1: 21-32.
Thompson, J.; Higginss, D.; Gibson, T. (1994). Clustal W: Improving the sensitivity progressive multiple sequence alignments through sequence weighting position specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673-4680.
Trieber, C.; Taylor, D. (2002). Mutations in the 16S genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol 184: 2131-2140.
Tuckman, M.; Petersen, P.; Howe, A.; Orlowski, M.; Mullen, S.; Chan, K.; Bradford, P.; Jones, C. (2007). Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline. Antimicrob Agents Chemother 51: 3205-3211. Viderman, D., Khamzina, Y., Kaligozhin, Z., Khudaibergenova, M., Zhumadilov, A., Crape, B., Azizan, A. (2018). An observational case study of hospital associated infections in a critical care unit in Astana, Kazakhstan. Antimicrobial resistance and infection control, 7, 57. doi:10.1186/s13756-018-0350-0 Witt, N., Rodger, G., Vandesompele, J., Benes, V., Zumla, A., Rook, A., Huggett, J. (2009). An assessment of air as a source of DNA contamination encountered when performing PCR. J Biomol Tech. 20(5):236-40.
Wolcott, M. (1992). Advances in nucleic acid-based detection methods. Clin Microbiol Rev 5: 370 -386.
Yáñez, D., Jara, MA. Navarro, C. (2018). Detection of BlaTEM resistance gene in bacteria described as nosocomial. Global Journal of Science Frontier Research 18(7): 21-28
Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203-14.
How to Cite
1.
Positive Controls In The Detection of Genes of Resistance to Tetracyclines In Bacteria of Veterinary Interest. Journal of Research and Opinion [Internet]. 2019 Apr. 30 [cited 2024 Nov. 21];6(4):2303-10. Available from: https://researchopinion.in/index.php/jro/article/view/7

Send mail to Author


Send Cancel

Custom technologies based on your needs

Journal of Research and Opinion  invites original research and review articles not published/submitted for publications anywhere. The journal accepts review articles only if author (s) has included his/her own research work and is an authority in the particular field. Invited or submitted review articles on current medical research developments will also be included. Medical practitioners are encouraged to contribute interesting case reports.

 

  • Manuscript template
  • Make a submission
  • Beta visitors

Why publish with us?

Open Access and Free

Full open-access. No processing & publication fees for authors

Refereed

The journal has rigorous peer-reviews

Indexed

The journal is indexed in DOAJ, SINTA and under review by ERIC